
Analysis of data from a seed bank study in R

The purpose of this small exercise is to create an artificial
seed bank dataset and show some principal ways of analysing
these data using the R statistical software package. Let´s
assume that the experiment varied the following factors:

1. Scarificiation Temperature (Room temperature, 30°C or
50°C)

2. Duration of Storage (Control, 10, 20, 40, 80 or 160 days)
3. Species (Plantago boissieri, P. ovata, and P. ciliata)

Let us further assume that the experiment is a fully
randomized factorial, i.e. every factor is randomly allocated
to independent populations of seed, and every combination of
factors is allowed. Thus, our experiment comprises

• 3 levels of temperature
• 6 levels of storage
• 3 levels of species
• each factor is replicated 5 times

In summary, we have n=(3x6x3)x5 = 270 independent replicates
in our experiment. Thus, there would be 5 petri dishes of
seeds stored at room temperature for P. boissieri, 5 petri
dishes of the same treatment combination, but a different
Plantago species, and so on. Once we´ve created our dataset,
we can look at a summary table to check if everything is well
replicated.

Setting up the artificial dataframe

Before we can type in (or create) the values of our response
variable, we have two options. First, we could use a
spreadsheet-based program such as Excel to create our
dataframe. This could look like this:

species temp days germination
P.boissieri 20° control
P.boissieri 20° control
P.boissieri 20° control
P.boissieri 20° control
P.boissieri 20° control
P.boissieri 20° 10 days
P.boissieri 20° 10 days

P.boissieri 20° 10 days
P.boissieri 20° 10 days
P.boissieri 20° 10 days
(…) (…) (…)

The problem with such an approach is that it could easily take
us ages to create that spreadsheet, especially if we were
dealing with more than 270 replicates. Thus, we try our luck
using R, which – as we will soon see – just takes three lines
of code to create the whole dataframe.

Creating the dataset in R

We need just a few basic commands in R in order to create our
dataframe. But unless you don´t know exactly what these
commands mean, it will be hard for you to grasp what we´ll be
doing in the next steps. So here comes what you need to know
first:

1. The rep() command. This says “repeat the following X
times” – e.g. “print ´P. boissieri´ three times. This is
how rep() is used:

rep("P. boissieri",3)

which yields:

[1] "P. boissieri" "P. boissieri" "P. boissieri"

2. The c() command. This says “concatenate all elements into
one single vector” – or simply “combine”. For example,
let´s say you want to create a series of AAABBBCCC; you
could first use rep(“A”,3) and rep (“B”,3) and so on, and
then concatenate all three sub-sequences into a single
one. An example should make this clear:

rep("A",3)

[1] "A" "A" "A"

rep("B",3)

[1] "B" "B" "B"

rep("C",3)

[1] "C" "C" "C"

Now we use c() to combine all three, separating each
element by commas:

c(rep("A",3), rep("B",3), rep("C",3))

[1] "A" "A" "A" "B" "B" "B" "C" "C" "C"

3. Finally, we can go one step further and replicate this
last sequence for an almost infinite time; let´s assume
we want to have our “AAABBBCCC” sequence replicated 100
times. This is easy: We just use rep() once more, with
the syntax “rep(our sequence, 100 times)”:

rep(c(rep("A",3),rep("B",3),rep("C",3)) ,100)

 Our output could then look like this:

 [1] "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A"

 [20] "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A"

 [39] "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A"

 [58] "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B"

 [77] "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B"

 [96] "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B"

[115] "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C"[…]

I think you got the point. R enables us to very quickly create
huge dataframes and save a lot of time (and money, because
it´s free).

Knowing all these preliminaries, how can we move on to our
specific case with the Plantago species? I´ll write down the
code below, and you can try out on your own what this means:

species<-
c(rep("P.boissieri",90),rep("P.ovata",90),rep("P.ciliata",90))

temp<-
rep(c(rep("20°",30),rep("30°",30),rep("50°",30)),3)

days<-
rep(c(rep("control",5),rep("10 days",5),rep("20
days",5),rep("40 days",5),rep("80 days",5),rep("160
days",5)),9)

The only thing you might be unfamiliar with is the “gets” operator “<-“
which is used to assign names to variables. Thus, the syntax

 temp<-rep(A,B)

means ´replicate A B-times and call this variable “temp”´. That´s all you
need to know up to here.

Let´s inspect what we have done so far: We have created three variables,
species, temp, and days; ideally, we would want to have them combined in a
spreadsheet-like manner. Luckily, this is very easy in R: We just type

data<-data.frame(species,temp,days)

As you see, the “gets” operator, “<-“, is used once again here, to give our
spreadsheet a name, data. To see the result, we use

edit(data)

which yields the following output:

So everything is fine by now, and we can start typing in data. For the
purpose of this exercise, we just quickly create an artificial variable,
called germination, and then move on with the analysis:

germination<-sample(seq(0,1,0.01),270,replace=T)*100

The sample() command is used to draw 270 random numbers (between 0 and 1 in
this case, with steps of 0.01) with replacement. Because all values will
lie between 0 and 1, we multiply them by 100 to get pseudo-“percentage”
values.

For an overview of what we have so far, we use

 table(days,species,temp)

to see the number of replicates in our dataframe called “data” (I will not
present the output here, you can try out on your own).

We can also type

str(germination)

to see how many germination readings we have, and what the values look
like:

 num [1:270] 34 36 64 3 70 82 51 11 91 41 ...

Finally, we could try with some first graphical representations of our
data, using the plot() command. For example, if you type

 plot(temp,germination)

a graphics window will open, and you will get the following output:

So everything is fine by now. But now we´d also like to see some treatment
effects. Let´s suppose we want to have a higher germination rate for all
seeds that have been received a 50°C scarification temperature. We first
address all values of the variable “germination” that passes our criterion
“50°C”, like this:

germination[temp=="50°"]

We use the square brackets, [], to address those values of germination that
occur at the temperature “50°”. Just for comparison: In Excel, this could
for example be achieved using the “Auto Filter” command.

And now we want to sample from a different range of values. Let´s say,
instead of the interval 0…1 we want to have all values between 0.5 and 1
(i.e. between 50% and 100% germination):

germination[temp=="50°"]<-sample(seq(0.5,1,0.01),90,replace=T)*100

the second line of this command should already be familiar to you; it is
the sample() command again, with the minor change that we write
seq(0.5,1,0.01),90 instead of seq(0,1,0.01),270.

Let´s see what has happened:

plot(temp,germination)

The germination rate for the 50° treatment indeed is now much
higher, starting well above the 50% value on the y-axis.

Analysis of the dataset

Let´s recall what type of experiment we have: There are three so-called
factors that we varied in order to study their effects on germination of
seeds:

 1. Scarificiation Temperature (3 levels)
2. Duration of Storage (6 levels)
3. Species (3 levels)

These are the so-called factors we manipulated on purpose
during the course of our experiment.

Let´s ask ourselves: What have we measured? Of course, we have “measured”
the temperatures, the duration and so on, and we have also “measured” what
species we were dealing with. But this is all uninformative. We could also
have given the species arbitrary names “A”,”B”,”C”. Or we could have said
the temperatures were “high”, ”medium” and “low”.

 The only thing we are really interested in is the germination of
our seeds. This is why we call this the “response variable” –
because “germination” “responded” in some way to our three
experimental treatments.

So what consequences does this all have for our analyses? Well, definitely,
we´re not going to do a regression analysis – we have factors whose effects
on our response variable we want to estimate. The correct way to analyze
these data is a technique called analysis of variance. Without going into
detail, let´s directly start with this kind of analysis, using R.

We have to tell R first that we´re dealing with factors. This is easy and
involves just three further lines of code:

species<-factor(species)
temp<-factor(temp)

days<-factor(days)

The command for an analysis of variance is, guess, “aov” (which is just an
abbreviation). Now comes the syntax. This is very, very important and you
should memorize it:

Model<-aov(response variable ~ explanatory variable(s)

Let´s go through this step by step.

1. First of all, an analysis of variance is a statistical model to
describe our data. Thus, it is reasonable to give it a name, and
because we are lazy, we call it “Model”.

2. Second comes the aov() command
3. In an analysis of variance, we always type the response variable

first, followed by the “tilda” symbol, “~”, which reads “is modelled
as a function of…”.

4. After the tilda, “~”, come the explanatory variables (three in our
case), separated by a “+”. Thus, we model germination as a function
of temp+days+species:

Model<-aov(germination~temp+days+species)

Believe it or not, that´s all! All we need to do now, to see what our
analysis says, is type

summary(Model)

And we get an output ANOVA table, telling us what main effects were
significant:

 Df Sum Sq Mean Sq F value Pr(>F)
temp 2 40757 20378 30.5518 1.210e-12 ***
days 5 923 185 0.2768 0.9256
species 2 1330 665 0.9970 0.3704
Residuals 260 173423 667

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Further steps for more experienced users

There are several issues that I have skipped so far in order to ease
understanding.

1. First of all, we could make days an ordered factor (we know that
“control”<20<40<80<160 days):

days<-ordered(days,levels=c("control","10 days","20 days","40
days","80 days","160 days"))

This is especially important for plotting, because R usually orders
the levels of a factor by alphabet, unless you tell it the order in
which you´d like it to be plotted.

2. Secondly, we would (especially with “real” data) almost certainly
have to transform our reponse variable using an arcsine-square root
transformation like this:

arcgermination<-asin(sqrt(germination/100))

3. Thirdly, we could dive deeper into our data by specifying the anova
as a full factorial ANOVA, including interactions, using “*” instead
of “+” as the separator for the explanatory variables:

model1<-aov(arcgermination~species*temp*days)

4. Further steps would now include model simplification like this:

model1<-aov(arcgermination~species*temp*days)
summary(model1)
 Df Sum Sq Mean Sq F value Pr(>F)
species 2 0.0406 0.0203 0.2106 0.8103
temp 2 5.8526 2.9263 30.3390 2.442e-12 ***
days 5 0.1299 0.0260 0.2694 0.9295
species:temp 4 0.1972 0.0493 0.5110 0.7277
species:days 10 1.0716 0.1072 1.1110 0.3550
temp:days 10 0.2521 0.0252 0.2614 0.9886
species:temp:days 20 1.8622 0.0931 0.9653 0.5056
Residuals 216 20.8339 0.0965

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model2<-update(model1,~.-species:temp:days-temp:days-species:days-
species:temp)
anova(model2,model1)
Analysis of Variance Table

Model 1: arcgermination ~ species + temp + days
Model 2: arcgermination ~ species * temp * days
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 260 24.217
2 216 20.834 44
summary(model2)

 3.383 0.7971 0.8135

 Df Sum Sq Mean Sq F value Pr(>F)
species 2 0.0406 0.0203 0.2181 0.8042
temp 2 5.8526 2.9263 31.4176 6.012e-13 ***
days 5 0.1299 0.0260 0.2789 0.9244
Residuals 260 24.2169 0.0931

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
model3<-update(model2,~.-species-days)

'.' 0.1 ' ' 1

anova(model2,model3)

Analysis of Variance Table

Model 1: arcgermination ~ species + temp + days
Model 2: arcgermination ~ temp
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 260 24.2169
2 267 24.3874 -7 -0.1705 0.2615 0.968

 summary(model3)
 Df Sum Sq Mean Sq F value Pr(>F)
temp 2 5.8526 2.9263 32.038 3.380e-13 ***
Residuals 267 24.3874 0.0913

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model3 would thus represent the minimal adequate model, containing
just temp as the only significant explanatory variable.

5. A similar result can be obtained using automated model
simplification, i.e. with the step() command in R:

step(model1)
Start: AIC= -583.7
 arcgermination ~ species * temp * days

 Df Sum of Sq RSS AIC
- species:temp:days 20 1.86 22.70 -600.58
<none> 20.83 -583.70

Step: AIC= -600.58
 arcgermination ~ species + temp + days + species:temp + species:days +
 temp:days

 Df Sum of Sq RSS AIC
- temp:days 10 0.25 22.95 -617.60
- species:days 10 1.07 23.77 -608.13
- species:temp 4 0.20 22.89 -606.25
<none> 22.70 -600.58

Step: AIC= -617.6
 arcgermination ~ species + temp + days + species:temp + species:days

 Df Sum of Sq RSS AIC
- species:days 10 1.07 24.02 -625.28
- species:temp 4 0.20 23.15 -623.29
<none> 22.95 -617.60

Step: AIC= -625.28
 arcgermination ~ species + temp + days + species:temp

 Df Sum of Sq RSS AIC
- days 5 0.13 24.15 -633.82
- species:temp 4 0.20 24.22 -631.07
<none> 24.02 -625.28

Step: AIC= -633.82
 arcgermination ~ species + temp + species:temp

 Df Sum of Sq RSS AIC
- species:temp 4 0.20 24.35 -639.63
<none> 24.15 -633.82

Step: AIC= -639.63
 arcgermination ~ species + temp

 Df Sum of Sq RSS AIC
- species 2 0.04 24.39 -643.18
<none> 24.35 -639.63
- temp 2 5.85 30.20 -585.46

Step: AIC= -643.18

 arcgermination ~ temp

 Df Sum of Sq RSS AIC
<none> 24.39 -643.18
- temp 2 5.85 30.24 -589.10
Call:
 aov(formula = arcgermination ~ temp)

Terms:
 temp Residuals
Sum of Squares 5.852583 24.387418
Deg. of Freedom 2 267

Residual standard error: 0.3022228
Estimated effects may be unbalanced

6. After having established the significant main effect of temp on
arcgermination, we can look for significant differences between the
levels of temp. This is what is commonly called “multiple
comparisons”, but there´s an easier approach to this, using
summary.lm() rather than summary() to inspect the aov() output:

summary.lm(model3)

Call:
aov(formula = arcgermination ~ temp)

Residuals:
 Min 1Q Median 3Q Max
-0.77310 -0.21414 -0.01902 0.21806 0.79770

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.76232 0.03186 23.929 < 2e-16 ***
temp30° 0.01077 0.04505 0.239 0.811
temp50° 0.31757 0.04505 7.049 1.54e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3022 on 267 degrees of freedom
Multiple R-Squared: 0.1935, Adjusted R-squared: 0.1875
F-statistic: 32.04 on 2 and 267 DF, p-value: 3.380e-13

The most important part of the output are the coefficients. The
parameter labelled (Intercept) is the mean of arcgermination for the
first level of temperature (in our case, 20°C). We can check this by
typing

mean(arcgermination[temp=="20°"])
[1] 0.762322

Now comes the important bit (and the part that can cause big headache):
The second parameter, labelled temp30°, is the difference between the
second and the first level of temp (30°-20°). This again becomes clear
if we calculate it by hand:

mean(arcgermination[temp=="30°"])-mean(arcgermination[temp=="20°"])
[1] 0.01077346

Likewise, the third parameter is the difference between the means
of the 50° and the 20° treatments:

mean(arcgermination[temp=="50°"])-
mean(arcgermination[temp=="20°"])
[1] 0.3175662

The adjacent columns list the standard errors of these
differences. If, for some reason, you want to know the means
predicted from the model, you can use

model.tables(model3,"means",se=T)

Grand mean 0.8717685
temp
 20° 30° 50°
0.7623 0.7731 1.0799

Or, for the back-transformed means, you can directly address these three
means, and back-transform them using sin(y)²:

sin(model.tables(model3,"means",se=T)$tables$temp)^2*100
temp
 20° 30° 50°
47.69320 48.76985 77.77565

7. Finally, if you really want to do more, you can do multiple

comparisons, yielding the same results, using one or all of the
following commands:

plot(TukeyHSD(model3))
TukeyHSD(model3)

pairwise.t.test(arcgermination,temp,
adjust.method="Bonferroni")

In case you´re unfamiliar with these commands, use ?TukeyHSD or
?pairwise.t.test for more information.

Good luck!

