
Analysis of data from a seed bank study in R 

The purpose of this small exercise is to create an artificial 
seed bank dataset and show some principal ways of analysing 
these data using the R statistical software package. Let´s 
assume that the experiment varied the following factors: 

1. Scarificiation Temperature (Room temperature, 30°C or 
50°C) 

2. Duration of Storage (Control, 10, 20, 40, 80 or 160 days) 
3. Species (Plantago boissieri, P. ovata, and P. ciliata) 

Let us further assume that the experiment is a fully 
randomized factorial, i.e. every factor is randomly allocated 
to independent populations of seed, and every combination of 
factors is allowed. Thus, our experiment comprises  

• 3 levels of temperature 
• 6 levels of storage 
• 3 levels of species 
• each factor is replicated 5 times 

In summary, we have n=(3x6x3)x5 = 270 independent replicates 
in our experiment. Thus, there would be 5 petri dishes of 
seeds stored at room temperature for P. boissieri, 5 petri 
dishes of the same treatment combination, but a different 
Plantago species, and so on. Once we´ve created our dataset, 
we can look at a summary table to check if everything is well 
replicated. 

 

Setting up the artificial dataframe 

Before we can type in (or create) the values of our response 
variable, we have two options. First, we could use a 
spreadsheet-based program such as Excel to create our 
dataframe. This could look like this: 

 
species temp days germination
P.boissieri 20° control  
P.boissieri 20° control  
P.boissieri 20° control  
P.boissieri 20° control  
P.boissieri 20° control  
P.boissieri 20° 10 days  
P.boissieri 20° 10 days  



P.boissieri 20° 10 days  
P.boissieri 20° 10 days  
P.boissieri 20° 10 days  
(…) (…) (…)  

 

The problem with such an approach is that it could easily take 
us ages to create that spreadsheet, especially if we were 
dealing with more than 270 replicates. Thus, we try our luck 
using R, which – as we will soon see – just takes three lines 
of code to create the whole dataframe. 

 

Creating the dataset in R 

We need just a few basic commands in R in order to create our 
dataframe. But unless you don´t know exactly what these 
commands mean, it will be hard for you to grasp what we´ll be 
doing in the next steps. So here comes what you need to know 
first: 

1. The rep() command. This says “repeat the following X 
times” – e.g. “print ´P. boissieri´ three times. This is 
how rep() is used: 

rep("P. boissieri",3)  

which yields: 

[1] "P. boissieri" "P. boissieri" "P. boissieri" 

2. The c() command. This says “concatenate all elements into 
one single vector” – or simply “combine”. For example, 
let´s say you want to create a series of AAABBBCCC; you 
could first use rep(“A”,3) and rep (“B”,3) and so on, and 
then concatenate all three sub-sequences into a single 
one. An example should make this clear:  

rep("A",3) 

[1] "A" "A" "A" 

rep("B",3) 

[1] "B" "B" "B" 

rep("C",3) 



[1] "C" "C" "C" 

Now we use c() to combine all three, separating each 
element by commas: 

c( rep("A",3),  rep("B",3),  rep("C",3) ) 

[1] "A" "A" "A" "B" "B" "B" "C" "C" "C" 

3. Finally, we can go one step further and replicate this 
last sequence for an almost infinite time; let´s assume 
we want to have our “AAABBBCCC” sequence replicated 100 
times. This is easy: We just use rep() once more, with 
the syntax “rep(our sequence, 100 times)”: 

rep(  c(rep("A",3),rep("B",3),rep("C",3)) ,100) 

 Our output could then look like this: 

 [1] "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" 

 [20] "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" 

 [39] "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" 

 [58] "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" 

 [77] "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" 

 [96] "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" 

[115] "C" "C" "C" "A" "A" "A" "B" "B" "B" "C" "C" "C" "A" "A" "A" "B" "B" "B" "C"[…] 

I think you got the point. R enables us to very quickly create 
huge dataframes and save a lot of time (and money, because 
it´s free). 

Knowing all these preliminaries, how can we move on to our 
specific case with the Plantago species? I´ll write down the 
code below, and you can try out on your own what this means: 

 
species<-
c(rep("P.boissieri",90),rep("P.ovata",90),rep("P.ciliata",90)) 
 
temp<- 
rep(c(rep("20°",30),rep("30°",30),rep("50°",30)),3) 
 
days<- 
rep(c(rep("control",5),rep("10 days",5),rep("20 
days",5),rep("40 days",5),rep("80 days",5),rep("160 
days",5)),9) 

 

 

 

 

 

 



The only thing you might be unfamiliar with is the “gets” operator “<-“ 
which is used to assign names to variables. Thus, the syntax 

 temp<-rep(A,B) 

means ´replicate A B-times and call this variable “temp”´. That´s all you 
need to know up to here. 

Let´s inspect what we have done so far: We have created three variables, 
species, temp, and days; ideally, we would want to have them combined in a 
spreadsheet-like manner. Luckily, this is very easy in R: We just type 

data<-data.frame(species,temp,days) 

As you see, the “gets” operator, “<-“, is used once again here, to give our 
spreadsheet a name, data. To see the result, we use  

edit(data) 

which yields the following output: 

 

So everything is fine by now, and we can start typing in data. For the 
purpose of this exercise, we just quickly create an artificial variable, 
called germination, and then move on with the analysis: 

germination<-sample(seq(0,1,0.01),270,replace=T)*100 

The sample() command is used to draw 270 random numbers (between 0 and 1 in 
this case, with steps of 0.01) with replacement. Because all values will 
lie between 0 and 1, we multiply them by 100 to get pseudo-“percentage” 
values. 

For an overview of what we have so far, we use 

 table(days,species,temp) 
 

to see the number of replicates in our dataframe called “data” (I will not 
present the output here, you can try out on your own). 

We can also type 



str(germination) 

to see how many germination readings we have, and what the values look 
like: 

  num [1:270] 34 36 64 3 70 82 51 11 91 41 ... 

Finally, we could try with some first graphical representations of our 
data, using the plot() command. For example, if you type 

 plot(temp,germination) 

a graphics window will open, and you will get the following output: 

 
So everything is fine by now. But now we´d also like to see some treatment 
effects. Let´s suppose we want to have a higher germination rate for all 
seeds that have been received a 50°C scarification temperature. We first 
address all values of the variable “germination” that passes our criterion 
“50°C”, like this: 

germination[temp=="50°"] 

We use the square brackets, [], to address those values of germination that 
occur at the temperature “50°”. Just for comparison: In Excel, this could 
for example be achieved using the “Auto Filter” command. 

And now we want to sample from a different range of values. Let´s say, 
instead of the interval 0…1 we want to have all values between 0.5 and 1 
(i.e. between 50% and 100% germination): 

germination[temp=="50°"]<-sample(seq(0.5,1,0.01),90,replace=T)*100 

the second line of this command should already be familiar to you; it is 
the sample() command again, with the minor change that we write 
seq(0.5,1,0.01),90 instead of seq(0,1,0.01),270. 
 

Let´s see what has happened: 

plot(temp,germination) 



 

The germination rate for the 50° treatment indeed is now much 
higher, starting well above the 50% value on the y-axis. 

 

Analysis of the dataset 

Let´s recall what type of experiment we have: There are three so-called 
factors that we varied in order to study their effects on germination of 
seeds: 

 1. Scarificiation Temperature (3 levels) 
2. Duration of Storage (6 levels) 
3. Species (3 levels) 

These are the so-called factors we manipulated on purpose 
during the course of our experiment. 

 

 

 

 

Let´s ask ourselves: What have we measured? Of course, we have “measured” 
the temperatures, the duration and so on, and we have also “measured” what 
species we were dealing with. But this is all uninformative. We could also 
have given the species arbitrary names “A”,”B”,”C”. Or we could have said 
the temperatures were “high”, ”medium” and “low”. 

 The only thing we are really interested in is the germination of 
our seeds. This is why we call this the “response variable” – 
because “germination” “responded” in some way to our three 
experimental treatments. 

 

 

So what consequences does this all have for our analyses? Well, definitely, 
we´re not going to do a regression analysis – we have factors whose effects 
on our response variable we want to estimate. The correct way to analyze 
these data is a technique called analysis of variance. Without going into 
detail, let´s directly start with this kind of analysis, using R. 

We have to tell R first that we´re dealing with factors. This is easy and 
involves just three further lines of code: 
 

species<-factor(species) 
temp<-factor(temp) 



days<-factor(days) 

The command for an analysis of variance is, guess, “aov” (which is just an 
abbreviation). Now comes the syntax. This is very, very important and you 
should memorize it: 

 
Model<-aov(response variable ~ explanatory variable(s) 
  

Let´s go through this step by step.  

1. First of all, an analysis of variance is a statistical model to 
describe our data. Thus, it is reasonable to give it a name, and 
because we are lazy, we call it “Model”.  

2. Second comes the aov() command 
3. In an analysis of variance, we always type the response variable 

first, followed by the “tilda” symbol, “~”, which reads “is modelled 
as a function of…”. 

4. After the tilda, “~”, come the explanatory variables (three in our 
case), separated by a “+”. Thus, we model germination as a function 
of temp+days+species: 

 
Model<-aov(germination~temp+days+species)

 

Believe it or not, that´s all! All we need to do now, to see what our 
analysis says, is type 

summary(Model) 

And we get an output ANOVA table, telling us what main effects were 
significant: 

 Df Sum Sq Mean Sq F value    Pr(>F)     
temp          2  40757   20378 30.5518 1.210e-12 *** 
days          5    923     185  0.2768    0.9256     
species       2   1330     665  0.9970    0.3704     
Residuals   260 173423     667                       
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 



Further steps for more experienced users 

There are several issues that I have skipped so far in order to ease 
understanding.  

1. First of all, we could make days an ordered factor (we know that 
“control”<20<40<80<160 days): 

 
days<-ordered(days,levels=c("control","10 days","20 days","40 
days","80 days","160 days")) 

This is especially important for plotting, because R usually orders 
the levels of a factor by alphabet, unless you tell it the order in 
which you´d like it to be plotted. 

2. Secondly, we would (especially with “real” data) almost certainly 
have to transform our reponse variable using an arcsine-square root 
transformation like this: 

arcgermination<-asin(sqrt(germination/100)) 

3. Thirdly, we could dive deeper into our data by specifying the anova 
as a full factorial ANOVA, including interactions, using “*” instead 
of “+” as the separator for the explanatory variables: 

model1<-aov(arcgermination~species*temp*days) 

4. Further steps would now include model simplification like this: 

 
model1<-aov(arcgermination~species*temp*days) 
summary(model1) 
                   Df  Sum Sq Mean Sq F value    Pr(>F)     
species             2  0.0406  0.0203  0.2106    0.8103     
temp                2  5.8526  2.9263 30.3390 2.442e-12 *** 
days                5  0.1299  0.0260  0.2694    0.9295     
species:temp        4  0.1972  0.0493  0.5110    0.7277     
species:days       10  1.0716  0.1072  1.1110    0.3550     
temp:days          10  0.2521  0.0252  0.2614    0.9886     
species:temp:days  20  1.8622  0.0931  0.9653    0.5056     
Residuals         216 20.8339  0.0965                       
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
model2<-update(model1,~.-species:temp:days-temp:days-species:days-
species:temp) 
anova(model2,model1) 
Analysis of Variance Table 
 
Model 1: arcgermination ~ species + temp + days 
Model 2: arcgermination ~ species * temp * days 
  Res.Df    RSS  Df Sum of Sq      F Pr(>F) 
1    260 24.217                             
2    216 20.834  44 
summary(model2) 

    3.383 0.7971 0.8135 

             Df  Sum Sq Mean Sq F value    Pr(>F)     
species       2  0.0406  0.0203  0.2181    0.8042     
temp          2  5.8526  2.9263 31.4176 6.012e-13 *** 
days          5  0.1299  0.0260  0.2789    0.9244     
Residuals   260 24.2169  0.0931                       
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 
model3<-update(model2,~.-species-days) 

'.' 0.1 ' ' 1  

anova(model2,model3) 



Analysis of Variance Table 
 
Model 1: arcgermination ~ species + temp + days 
Model 2: arcgermination ~ temp 
  Res.Df     RSS  Df Sum of Sq      F Pr(>F) 
1    260 24.2169                             
2    267 24.3874  -7   -0.1705 0.2615  0.968 
 

 

 summary(model3) 
             Df  Sum Sq Mean Sq F value    Pr(>F)     
temp          2  5.8526  2.9263  32.038 3.380e-13 *** 
Residuals   267 24.3874  0.0913                       
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 

 
 
 
 
 

Model3 would thus represent the minimal adequate model, containing 
just temp as the only significant explanatory variable.  
 
 

5. A similar result can be obtained using automated model 
simplification, i.e. with the step() command in R: 
 
step(model1) 
Start:  AIC= -583.7  
 arcgermination ~ species * temp * days  
 
                    Df Sum of Sq     RSS     AIC 
- species:temp:days 20      1.86   22.70 -600.58 
<none>                             20.83 -583.70 
 
Step:  AIC= -600.58  
 arcgermination ~ species + temp + days + species:temp + species:days +   
    temp:days  
 
               Df Sum of Sq     RSS     AIC 
- temp:days    10      0.25   22.95 -617.60 
- species:days 10      1.07   23.77 -608.13 
- species:temp  4      0.20   22.89 -606.25 
<none>                        22.70 -600.58 
 
Step:  AIC= -617.6  
 arcgermination ~ species + temp + days + species:temp + species:days  
 
               Df Sum of Sq     RSS     AIC 
- species:days 10      1.07   24.02 -625.28 
- species:temp  4      0.20   23.15 -623.29 
<none>                        22.95 -617.60 
 
Step:  AIC= -625.28  
 arcgermination ~ species + temp + days + species:temp  
 
               Df Sum of Sq     RSS     AIC 
- days          5      0.13   24.15 -633.82 
- species:temp  4      0.20   24.22 -631.07 
<none>                        24.02 -625.28 
 
Step:  AIC= -633.82  
 arcgermination ~ species + temp + species:temp  
 
               Df Sum of Sq     RSS     AIC 
- species:temp  4      0.20   24.35 -639.63 
<none>                        24.15 -633.82 
 
Step:  AIC= -639.63  
 arcgermination ~ species + temp  
 
          Df Sum of Sq     RSS     AIC 
- species  2      0.04   24.39 -643.18 
<none>                   24.35 -639.63 
- temp     2      5.85   30.20 -585.46 
 
Step:  AIC= -643.18  



 arcgermination ~ temp  
 
       Df Sum of Sq     RSS     AIC 
<none>                24.39 -643.18 
- temp  2      5.85   30.24 -589.10 
Call: 
   aov(formula = arcgermination ~ temp) 
 
Terms: 
                     temp Residuals 
Sum of Squares   5.852583 24.387418 
Deg. of Freedom         2       267 
 
Residual standard error: 0.3022228  
Estimated effects may be unbalanced 
 
 

6. After having established the significant main effect of temp on 
arcgermination, we can look for significant differences between the 
levels of temp. This is what is commonly called “multiple 
comparisons”, but there´s an easier approach to this, using 
summary.lm() rather than summary() to inspect the aov() output: 

 
summary.lm(model3) 
 
 
Call: 
aov(formula = arcgermination ~ temp) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.77310 -0.21414 -0.01902  0.21806  0.79770  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.76232    0.03186  23.929  < 2e-16 *** 
temp30°      0.01077    0.04505   0.239    0.811     
temp50°      0.31757    0.04505   7.049 1.54e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 0.3022 on 267 degrees of freedom 
Multiple R-Squared: 0.1935,     Adjusted R-squared: 0.1875  
F-statistic: 32.04 on 2 and 267 DF,  p-value: 3.380e-13 

 
The most important part of the output are the coefficients. The 
parameter labelled (Intercept) is the mean of arcgermination for the 
first level of temperature (in our case, 20°C). We can check this by 
typing 

mean(arcgermination[temp=="20°"]) 
[1] 0.762322 
 
Now comes the important bit (and the part that can cause big headache): 
The second parameter, labelled temp30°, is the difference between the 
second and the first level of temp (30°-20°). This again becomes clear 
if we calculate it by hand: 

mean(arcgermination[temp=="30°"])-mean(arcgermination[temp=="20°"]) 
[1] 0.01077346 
 
Likewise, the third parameter is the difference between the means 
of the 50° and the 20° treatments: 



mean(arcgermination[temp=="50°"])-
mean(arcgermination[temp=="20°"]) 
[1] 0.3175662 
  
The adjacent columns list the standard errors of these 
differences. If, for some reason, you want to know the means 
predicted from the model, you can use 
 
model.tables(model3,"means",se=T) 
 
Grand mean 0.8717685  
temp 
   20°    30°    50°  
0.7623 0.7731 1.0799  
 
Or, for the back-transformed means, you can directly address these three 
means, and back-transform them using sin(y)²: 
 
sin(model.tables(model3,"means",se=T)$tables$temp)^2*100 
temp 
     20°      30°      50°  
47.69320 48.76985 77.77565 
 
 
 
7. Finally, if you really want to do more, you can do multiple 

comparisons, yielding the same results, using one or all of the 
following commands: 

 
plot(TukeyHSD(model3)) 
TukeyHSD(model3) 

 
pairwise.t.test(arcgermination,temp, 
adjust.method="Bonferroni") 

 
 
In case you´re unfamiliar with these commands, use ?TukeyHSD or 
?pairwise.t.test for more information. 
 
Good luck! 

 


